

tics

North China Electrical Power University

3MHz GaN DC-DC 48Vin direct to 0.6 Vout realized by ultra-short pulse(5ns) using Virtual Peak **Current Mode control technique**

Isao Takobe, ROHM

Introduction Power Supply Market Trends

Reduce power loss with higher bus voltage

XXXXXX

pci

ASIA

- Higher bus voltage and battery voltage
- Lower supply voltage for MCU and CPU

《2-stage configuration》

(tutorial) Voltage mode control, Peak current mode control, Nonlinear control (hysteresis, COT, etc.), with the easiest to use generally being peak current mode

Easy to get stability, constant frequency, available in parallel

8/2/2023

Pros: Traditional and lot of knowledge. Good for high-voltage application Cons: 2nd order need careful design of complex 3pole-2zero compensator)

Pros: first response (intra-cycle response) because no clock Cons: Frequency changes, difficult of parallel operation

Peak-current mode(PCM) (1st order)

Pros: 1st order is stable, easy to design compensator, high-bandwidth. Cons: Difficult of Short Ton (such high voltage ratio, high frequency)

2 factors make it difficult to achieve narrow pulse

•Ringing at rise

•Finite delay time to process current information

Virtual PCM control Peak Current-sense method for ultra-short pulse

2 conditions necessary for problem solving

- 1. That provides robust and reliable information that is directly proportional to the inductor current
- 2. Holds the feedback current information for use in the subsequent duty cycle

 $V_{slope} = I_{sense} + V_{ramp}$

Stable current information monitoring with sample/hold

The basic configuration is the same as the conventional S1 detection, but the A part is different.

$$R_S = \frac{\beta}{CR_2} \Delta t_{on}$$

β:S2 Ron Δton:fixed time

Sample/hold circuit to avoid noise effects

Virtual PCM control Slope compensation circuit

Timing chart to avoid noise effects

Start of slope compensation

This method can operate in current mode, no matter how narrow the pulse

Transfer function of the Virtual PCM

Calculated bode-plot of Open-loop Transfer function T(s) at Target fbw=70kHz

Experimental Results of the prototype Switching operation

VIN CINIT CI

Schematic of prototype board

prototype board

The specification of the board

Input voltage	48V
Output voltage	0.6V
Output load	5A
Switching frequency	3MHz
Inductor	110nH
Output Capacitor	400uF
High side Switch (S1)	GNE1040TB(150V/40m)
Low side Switch (S2)	GNE1040TB(150V/40m)
Controller	BD9JZ00TL

Switching waveform

Switching waveform(zoom)

Switching operation at 3MHz with input voltage (Vin) of 48V and output voltage (Vout) of 0.6V with ultra-short pulse (at Ton around 5ns) was confirmed.

8/2/2023

Calculated bode-plot

Measured of bode-plot

It is confirmed that the open-loop transfer function shows a typical 1st-order system that successfully uses a Type II (2pole, 1zero) compensator common to conventional PCM control.

The measured load transient response waveform verified the results of the bode-plot

Measured of load transient response waveforms

1/70kHz×1/4≒4µs

Developed virtual PCM (peak current mode) control chip

High-frequency and high-buck conversion

Using $150V/40m\Omega$ high-speed GaN on high side and low side, Confirms stable operation at 3MHz, 48Vin, 0.6Vout, 5A, Ton=5ns

Avoids current ringing during turn-on and enables PCM operation even with ultra-short pulses

- ✓ Bode plot measurements confirm that the open-loop transfer function shows a typical 1st-order system with a type II (2pole,1zero) compensator
- ✓ Load transient test confirms that the transfer function works properly

This technology is promising for high-frequency, high-buck conversions such as 48V direct converters